

SURAT TUGAS No.008/FSTD/DEKAN/STG/1/2025

Dekan Fakultas Sains Teknik dan Desain dengan ini menugaskan kepada:

No	Nama	NIDN	Prodi
1.	Nina Sariana, S.Kom., MMSI.	0324028004	Sistem Informasi
2.	Abdul Haris Rustaman, S.ST., M.Ds.	0331128804	DKV

Untuk mengisi acara sebagai Narasumber dan Moderator kegiatan Kuliah Umum "Inovasi Bisnis Hijau dan praktiknya" yang akan diselenggarakan pada:

Hari / Tgl

: Kamis / 09 Januari 2025

Waktu

: 07.45 - 10.15 WIB

Demikian surat tugas ini kami sampaikan, untuk dilaksanakan dengan sebaik-baiknya dan penuh tanggung jawab.

Jakarta,08 Januari 2025

Dr.Dina Nurul Fitria, S.E.,M.T.,CSCA.,CRP Dekan Fakultas Sains , Teknik dan Desain

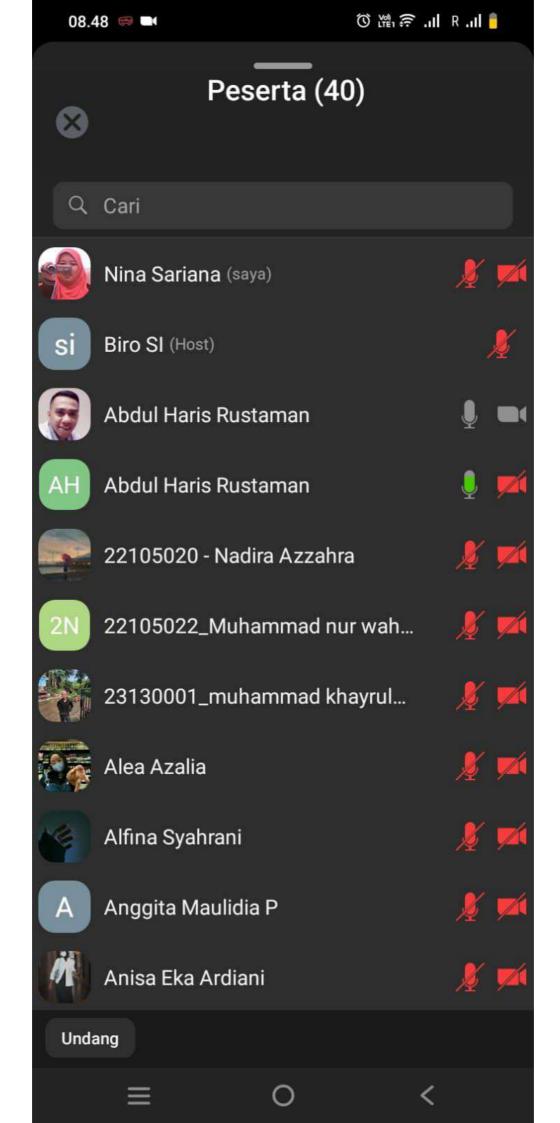
Tembusan:

- Wakil Rektor Bidang Pembelajaran Dan Kemahasiswaan
- Kepala Biro SDM

SERTIFIKAT PENGHARGAAN

DIBERIKAN KEPADA:

Nina Sariana, MMSI


NARASUMBER

Pada Kegiatan Kuliah Umum Mata Kuliah Kapita Selekta Sains Teknologi dan Inovasi, yang diselenggarakan pada Tanggal 9 Januari 2025, dengan tema:

INOVASI BISNIS HIJAU "GREEN INFORMATION SYSTEM"

Dr. Dina Nurul Fitria, S.E, M.T., CSCA., CRP.

Dekan Fakultas Sains, Teknik, dan Desain Universitas Trilogi

GREEN SYSTEM INFORMATION

- A. Pengelolaan Energi: Mengembangkan sistem informasi yang hemat energi atau memanfaatkan teknologi rendah daya.
- **B.** Pengurangan Emisi Karbon: Mengurangi dampak lingkungan dari penggunaan server, pusat data, dan perangkat keras lainnya.
- C. Pemanfaatan Teknologi Hijau: Menggunakan perangkat keras atau teknologi yang lebih ramah lingkungan, seperti server hemat energi.
- **D. Digitalisasi**: Mengurangi penggunaan kertas dan sumber daya fisik dengan mengalihkan proses ke digital.
- E. Siklus Hidup Produk: Merancang sistem yang mempertimbangkan recycling dan reuse perangkat keras.

A. PENGELOLAAN ENERGI

Berikut adalah beberapa contoh pengelolaan energi dengan memanfaatkan teknologi rendah daya:

1. Penggunaan Server Hemat Energi

Teknologi Virtualisasi: Dengan virtualisasi, satu server fisik dapat menjalankan beberapa mesin virtual, sehingga mengurangi jumlah server fisik yang diperlukan dan konsumsi energi.

Server Berbasis ARM: Prosesor ARM dikenal hemat energi dan semakin banyak digunakan di pusat data modern dibandingkan prosesor tradisional.

2. Optimasi Data Center

Pendinginan Cerdas: Menggunakan pendingin berbasis AI untuk mengatur suhu secara efisien di pusat data (misalnya, Google menggunakan DeepMind AI untuk mengurangi energi pendinginan hingga 40%).

Lokasi Data Center Strategis: Menempatkan pusat data di wilayah beriklim dingin untuk memanfaatkan suhu alami dalam proses pendinginan.

3. Teknologi Low-Power IoT

Perangkat **IoT** (Internet of Things) yang menggunakan protokol komunikasi rendah daya, seperti LoRaWAN, ZigBee, atau NB-IoT, untuk menghemat energi.

Contoh: Sensor lingkungan yang memantau kelembapan dan suhu di lahan pertanian menggunakan daya baterai kecil selama bertahun-tahun.

4. Perangkat dengan Prosesor Efisien

Laptop atau perangkat yang menggunakan prosesor seperti Intel Evo atau ARM yang dirancang untuk konsumsi daya rendah tanpa mengorbankan performa.

Contoh: Chromebook yang menggunakan daya lebih rendah dibandingkan laptop tradisional.

5. Pemanfaatan Energi Terbarukan

Mengintegrasikan energi terbarukan, seperti solar panel atau tenaga angin, untuk mendukung operasional sistem informasi, seperti pusat data atau server lokal.

Contoh: Apple menggunakan 100% energi terbarukan untuk menjalankan pusat datanya.

6. Sistem Smart Lighting

Menggunakan teknologi **LED cerdas** yang terintegrasi dengan sistem informasi untuk mengoptimalkan pencahayaan di gedung perkantoran sesuai kebutuhan, sehingga mengurangi konsumsi listrik.

7. Desain Aplikasi atau Algoritma Efisien

Pengembangan algoritma yang dirancang untuk mengoptimalkan penggunaan daya, seperti mengurangi siklus CPU yang tidak perlu atau meminimalkan operasi pada perangkat seluler.

B. PENGURANGAN EMISI KARBON

Berikut adalah beberapa contoh nyata bagaimana mengurangi emisi karbon dari penggunaan server, pusat data, dan perangkat keras lainnya:

1. Optimalisasi Pusat Data

Migrasi ke Cloud: Memindahkan infrastruktur ke penyedia layanan cloud yang menggunakan pusat data yang lebih efisien dan ramah lingkungan (seperti AWS, Google Cloud, atau Microsoft Azure, yang menggunakan energi terbarukan).

Dampak: Pusat data berbasis cloud umumnya lebih hemat energi dibandingkan dengan pusat data lokal yang dikelola sendiri.

Desain Pusat Data Hijau:

Memanfaatkan desain pusat data ramah lingkungan, seperti pengaturan sistem pendinginan cerdas, penempatan di lokasi dengan iklim dingin, atau menggunakan air dingin dari sungai atau laut.

Contoh: Facebook menempatkan pusat data mereka di Luleå, Swedia, yang memanfaatkan suhu dingin alami untuk pendinginan.

2. Virtualisasi dan Konsolidasi Server

Virtualisasi: Mengurangi jumlah server fisik dengan menjalankan beberapa mesin virtual di satu perangkat keras fisik.

Contoh: VMware atau Hyper-V untuk mengonsolidasikan aplikasi ke lebih sedikit server.

Dampak: Mengurangi kebutuhan server fisik, energi, dan ruang fisik.

Dynamic Workload Allocation: Memindahkan tugas ke server yang lebih hemat energi atau ke lokasi dengan sumber energi terbarukan, serta mematikan server yang tidak diperlukan.

3. Pemanfaatan Energi Terbarukan

Penggunaan Energi Surya atau Angin: Mengoperasikan pusat data dengan energi terbarukan, seperti panel surya atau turbin angin.

Contoh: Apple mengoperasikan pusat data mereka menggunakan 100% energi terbarukan.

Pusat Data Modular: Pusat data kecil dan efisien yang dapat ditempatkan di lokasi dekat sumber energi terbarukan.

Contoh: Microsoft membangun pusat data bawah laut di pantai Skotlandia yang memanfaatkan air dingin untuk pendinginan dan energi terbarukan.

4. Sistem Pendinginan Hemat Energi

Pendinginan Cerdas Berbasis AI: Menggunakan algoritma AI untuk memantau suhu dan mengoptimalkan penggunaan energi pendingin.

Contoh: Google menggunakan DeepMind AI untuk mengurangi konsumsi energi pendinginan hingga 40%.

Free Cooling: Menggunakan udara luar yang dingin atau air alami untuk mendinginkan pusat data tanpa memerlukan energi tambahan.

Contoh: Pusat data di negara-negara Nordik memanfaatkan udara dingin untuk pendinginan gratis.

5. Perangkat Keras Hemat Energi

Penggunaan Server Hemat Energi:

Server modern dengan prosesor hemat energi seperti ARM atau AMD EPYC yang dirancang untuk konsumsi daya rendah.

Contoh: Perusahaan memilih server dengan sertifikasi Energy Star.

Lifecycle Management: Memastikan perangkat keras diperbarui atau didaur ulang dengan benar untuk mengurangi limbah elektronik (e-waste).

6. Optimalisasi Perangkat Lunak

Efisiensi Algoritma:

Algoritma yang dirancang untuk meminimalkan siklus CPU, penggunaan memori, dan konsumsi daya perangkat keras.

Contoh: Pemrograman berbasis efisiensi energi di sistem berbasis cloud seperti AWS Lambda.

Compression dan Deduplication:

Mengurangi ukuran data yang disimpan dan ditransfer melalui algoritma kompresi dan penghapusan data duplikat.

Dampak: Mengurangi kebutuhan penyimpanan dan energi jaringan.

7. Desain Arsitektur Jaringan yang Ramah Lingkungan

Green Networking: Menggunakan perangkat jaringan (switch, router) yang hemat energi, seperti yang memanfaatkan teknologi **Energy Efficient Ethernet (EEE)**.

Optimasi Routing:

Mengarahkan data melalui jalur yang lebih hemat energi untuk mengurangi konsumsi daya jaringan.

8. Monitoring dan Pelaporan Emisi

Penggunaan Sistem Manajemen Energi:

Perangkat lunak untuk memantau dan menganalisis konsumsi daya pusat data.

Contoh: Schneider Electric EcoStruxure atau Microsoft Sustainability Calculator.

Pelaporan Karbon:

Perusahaan melaporkan jejak karbon dari infrastruktur IT mereka dan mengadopsi langkah-langkah untuk menguranginya.

9. Digitalisasi untuk Pengurangan Sumber Daya Fisik

Digital-first Approach: Mengurangi penggunaan sumber daya fisik seperti kertas, tinta, dan perangkat keras.

Contoh: E-signature untuk kontrak atau dokumen yang sebelumnya memerlukan pencetakan.

Penghapusan Server Lokal:

Alihkan beban kerja ke server yang lebih efisien secara global, mengurangi kebutuhan infrastruktur lokal.

10. Recycle dan Reuse Perangkat IT

Pengelolaan E-waste: Daur ulang perangkat keras lama dan menggunakan komponen yang masih berfungsi.

Contoh: HP dan Dell memiliki program pengumpulan perangkat lama untuk didaur ulang.

Circular Economy: Menggunakan kembali server yang diperbarui daripada membuangnya.

C. PEMANFAATAN TEKNOLOGI HIJAU

Berikut adalah contoh nyata dari pemanfaatan **teknologi hijau** dengan menggunakan perangkat keras atau teknologi yang lebih ramah lingkungan, termasuk server hemat energi:

1. Server Hemat Energi

Server Berbasis ARM

Prosesor ARM dirancang untuk konsumsi daya yang rendah dibandingkan dengan prosesor x86 tradisional. Server berbasis ARM digunakan oleh perusahaan seperti Amazon (AWS Graviton) dan Oracle.

Dampak: Mengurangi konsumsi daya hingga 40% dibandingkan server berbasis prosesor tradisional.

Server dengan Sertifikasi Energy Star

Server yang memenuhi standar **Energy Star** memiliki efisiensi energi lebih tinggi, menggunakan lebih sedikit listrik, dan menghasilkan lebih sedikit panas.

Contoh: Dell PowerEdge dan HP ProLiant, yang mendukung teknologi hemat daya seperti power capping dan dynamic power management.

2. Penggunaan Teknologi Virtualisasi

Mengurangi Jumlah Server Fisik

Dengan virtualisasi, satu server fisik dapat menjalankan banyak mesin virtual, mengurangi kebutuhan perangkat keras.

Contoh: VMware ESXi dan Microsoft Hyper-V.

Dampak: Menurunkan penggunaan listrik karena lebih sedikit server yang beroperasi.

3. Perangkat IoT dengan Konsumsi Daya Rendah

Perangkat berbasis IoT yang hemat daya, seperti sensor suhu atau kelembapan, menggunakan protokol komunikasi rendah daya seperti ZigBee atau LoRaWAN.

Contoh: Nest Thermostat dari Google yang membantu mengoptimalkan penggunaan energi di rumah dan kantor.

4. Sistem Pendinginan Ramah Lingkungan

Cooling Technology:

Menggunakan air alami atau udara bebas untuk mendinginkan server daripada menggunakan AC berbasis kompresor.

Contoh: Pusat data Google di Finlandia menggunakan air laut dingin untuk pendinginan.

Liquid Cooling:

Server yang menggunakan pendinginan cairan langsung untuk menyerap panas dengan lebih efisien dibandingkan pendinginan udara.

Contoh: IBM telah mengembangkan server dengan teknologi liquid immersion cooling.

5. Data Storage Hemat Energi

SSD (Solid-State Drives)

SSD lebih hemat energi dibandingkan HDD tradisional karena tidak memiliki komponen bergerak dan bekerja lebih cepat.

Contoh: NVMe SSD yang digunakan di pusat data modern untuk konsumsi daya yang lebih rendah.

Tiered Storage:

Sistem penyimpanan data berbasis "tier" yang memindahkan data yang jarang diakses ke penyimpanan hemat energi.

Contoh: Amazon S3 Glacier untuk data arsip dengan konsumsi daya minimum.

6. Pusat Data Modular

Modular Data Center:

Pusat data kecil dan fleksibel yang dapat ditempatkan di lokasi strategis untuk mengurangi kebutuhan energi transportasi data.

Contoh: HPE EcoPOD adalah pusat data modular yang hemat energi dan cepat diimplementasikan.

7. Perangkat Komputasi Hemat Energi

Laptop dan Desktop Green Computing:

Perangkat hemat energi seperti Chromebook atau laptop dengan prosesor Intel Evo dan AMD Ryzen yang dirancang untuk efisiensi daya.

Contoh: Chromebook dari Google yang menggunakan daya lebih rendah dibandingkan laptop tradisional.

8. Green Networking

Energy Efficient Ethernet (EEE):

Teknologi yang mengurangi konsumsi daya perangkat jaringan seperti switch dan router saat beban kerja rendah.

Contoh: Cisco dan Juniper Networks menawarkan perangkat dengan dukungan EEE.

Smart Power Management:

Perangkat jaringan yang secara otomatis mematikan port yang tidak aktif untuk menghemat energi.

9. Penggunaan Energi Terbarukan

Server Berbasis Tenaga Surya

Menggunakan panel surya untuk mendukung operasi server atau pusat data.

Contoh: Apple menggunakan panel surya untuk mendukung seluruh pusat data mereka.

Server dengan Back-up Battery Ramah Lingkungan

Menggunakan baterai lithium-ion untuk cadangan daya dibandingkan generator diesel tradisional.

10. Sistem Manajemen Energi

Al-Driven Energy Management:

Sistem berbasis kecerdasan buatan untuk memantau dan mengoptimalkan konsumsi energi perangkat keras.

Contoh: Schneider Electric EcoStruxure untuk mengelola energi di pusat data.

D. DIGITALISASI

Berikut adalah contoh penerapan digitalisasi untuk mengurangi penggunaan kertas dan sumber daya fisik dengan mengalihkan proses ke sistem digital:

1. E-Signature (Tanda Tangan Elektronik)

Contoh: Menggunakan platform seperti DocuSign atau Adobe Sign untuk mengelola dokumen legal dan kontrak tanpa mencetaknya.

Dampak: Mengurangi kebutuhan akan pencetakan, pengiriman dokumen fisik, dan penyimpanan arsip kertas.

2. Sistem Arsip Digital

Digitalisasi Dokumen:

Mengganti penyimpanan arsip fisik dengan sistem manajemen dokumen digital (Document Management System).

Contoh: Google Drive, Microsoft SharePoint, atau Dropbox untuk menyimpan dan berbagi dokumen.

Dampak: Mengurangi penggunaan kertas, ruang penyimpanan fisik, dan biaya logistik.

3. Proses Pembelajaran Online

E-Learning dan Digital Classroom:

Menggantikan buku cetak dan materi pelajaran fisik dengan platform pembelajaran online seperti Google Classroom, Moodle, atau Khan Academy.

Dampak: Mengurangi kebutuhan pencetakan buku, kertas ujian, dan materi pelajaran.

4. Faktur dan Tagihan Elektronik

E-Billing:

Mengganti faktur fisik dengan sistem pengiriman tagihan elektronik melalui email atau aplikasi.

Contoh: Penyedia layanan utilitas (listrik, air, internet) menggunakan e-billing untuk pelanggan mereka.

Dampak: Menghemat kertas yang sebelumnya digunakan untuk mencetak faktur.

5. Sistem e-Government

Pelayanan Publik Digital:

Mengalihkan layanan publik seperti pembuatan KTP, SIM, dan pembayaran pajak ke platform digital.

Contoh: Sistem Online Single Submission (OSS) di Indonesia untuk pengurusan perizinan usaha.

Dampak: Mengurangi formulir kertas dan mempermudah proses administratif.

6. E-Ticketing dan Boarding Pass Digital

Contoh:

Tiket pesawat, kereta api, atau bioskop menggunakan kode QR atau aplikasi tanpa perlu mencetak tiket fisik.

Platform: Traveloka, Tiket.com, atau aplikasi maskapai penerbangan.

Dampak: Mengurangi limbah kertas dari tiket fisik.

7. Digital Marketing

Penggunaan Media Sosial dan Iklan Digital:

Mengalihkan pemasaran dari brosur, pamflet, dan iklan cetak ke platform digital seperti Facebook, Instagram, dan Google Ads.

Dampak: Mengurangi limbah kertas dan biaya cetak materi pemasaran.

8. Sistem Perbankan Digital

E-Banking dan Mobile Banking:

Menggantikan buku tabungan fisik, slip setoran, dan cek dengan aplikasi perbankan.

Contoh: Aplikasi seperti BCA Mobile, BRImo, atau GoPay.

Dampak: Mengurangi penggunaan kertas untuk transaksi keuangan.

9. Sistem Kerja Jarak Jauh (Remote Work)

Collaboration Tools:

Menggunakan aplikasi seperti Microsoft Teams, Slack, atau Zoom untuk rapat dan kolaborasi.

Dampak: Mengurangi kebutuhan cetakan laporan, dokumen fisik, dan kertas untuk rapat.

10. Digital Publishing

E-Books dan E-Magazines:

Menggantikan buku cetak dan majalah dengan versi digital.

Contoh: Kindle, Scribd, atau Gramedia Digital.

Dampak: Mengurangi pencetakan buku dan pengiriman fisik.

11. Sistem Pemesanan Online

E-Commerce dan Digital Receipts:

Mengganti nota pembelian fisik dengan bukti pembelian digital.

Contoh: Tokopedia, Shopee, dan Amazon.

Dampak: Mengurangi penggunaan kertas untuk struk pembelian.

12. Digital Voting

E-Voting:

Sistem pemungutan suara berbasis digital untuk pemilu atau rapat organisasi.

Contoh: Sistem e-voting di beberapa negara maju.

Dampak: Mengurangi formulir kertas dan logistik pemilu.

E. SIKLUS HIDUP PRODUK

Berikut adalah contoh siklus hidup produk dalam konteks Green System Information (Sistem Informasi Ramah Lingkungan), menggunakan server hemat energi sebagai contoh produk:

Contoh Produk: Smartphone

1. Tahap Perkenalan (Introduction)

Deskripsi: Produk baru diperkenalkan ke pasar. Fokus utama adalah menciptakan kesadaran konsumen terhadap produk.

Kegiatan:

Peluncuran smartphone baru melalui kampanye iklan besar-besaran.

Demo produk di toko-toko atau platform online.

Penawaran harga promosi awal atau paket bundling.

Contoh: Peluncuran iPhone generasi pertama pada tahun 2007, yang menampilkan inovasi layar sentuh.

Ciri-ciri: Penjualan masih rendah, biaya pemasaran tinggi, dan fokus pada edukasi konsumen.

2. Tahap Pertumbuhan (Growth)

Deskripsi: Permintaan terhadap produk meningkat, dan penjualan mulai berkembang pesat. Fokusnya adalah memperluas pangsa pasar.

Kegiatan:

Penambahan fitur baru berdasarkan umpan balik konsumen (misalnya, memperbaiki kamera atau daya baterai).

Ekspansi ke pasar baru atau negara lain.

Penurunan harga secara bertahap untuk menarik lebih banyak pembeli.

Contoh: Setelah peluncuran awal, model-model berikutnya dari iPhone (seperti iPhone 4) mulai mendapatkan popularitas besar.

Ciri-ciri: Penjualan meningkat tajam, persaingan mulai muncul, dan profitabilitas lebih tinggi.

3. Tahap Kedewasaan (Maturity)

Deskripsi: Pasar mulai jenuh, dan tingkat pertumbuhan penjualan melambat. Fokusnya adalah mempertahankan pangsa pasar.

Kegiatan:

Menghadirkan inovasi kecil untuk mempertahankan minat konsumen (seperti warna baru atau aksesori tambahan).

Mengadakan promosi loyalitas pelanggan, diskon, atau bundling.

Pengurangan biaya produksi untuk menjaga margin keuntungan.

Contoh: iPhone menjadi produk yang dominan di pasar, dengan model-model seperti iPhone X mempertahankan relevansi melalui fitur-fitur baru (misalnya, Face ID).

Ciri-ciri: Penjualan stabil, persaingan tinggi, margin keuntungan mulai berkurang

4. Tahap Penurunan (Decline)

Deskripsi: Produk mulai kehilangan popularitas karena munculnya teknologi baru atau perubahan kebutuhan konsumen. Fokusnya adalah memaksimalkan keuntungan sebelum penghentian produk.

Kegiatan:

Pengurangan jumlah model yang diproduksi.

Diskon besar-besaran untuk menghabiskan stok.

Pindah fokus ke produk pengganti atau generasi baru.

Contoh: iPhone model lama seperti iPhone 6 atau 7 yang tidak lagi diproduksi setelah model-model terbaru muncul.

Ciri-ciri: Penjualan menurun drastis, biaya promosi rendah, dan produk akhirnya dihentikan.