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Abstract — This study was conducted to explore and find the
optimum parameters related to the Quality of Service (QoS) in
Vehicle-to-Vehicle (V2V) communication within Vehicular Ad
Hoc Networks (VANETSs) by optimizing the Learning
Automata-based Ad Hoc On-Demand Distance Vector protocol
(LA-AODYV). The study compared three variants of LA-AODV
(LA-AODV(A), LA-AODV(B), and LA-AODV(C)) with the
standard AODV. The simulation result evaluated their
performance based on crucial QoS metrics such as FLOD ID,
Packet Loss Ratio (PLR), Packet Delivery Ratio (PDR), Average
Throughput, End-to-End Delay, and End-to-End Jitter. The
results indicated that LA-AODV(B) consistently outperformed
the other variants, particularly in FLOD ID. The improvements
of 9.14%, 40.29%, and 22.79% in 50, 100, and 200-trial
scenarios compared to LA-AODV(A) were significant.
However, LA-AODV(C) showed suboptimal performance in the
exact scenarios. Nevertheless, practical parameter tuning of LA-
AODV(C) led to a remarkable improvement in protocol
performance, with a 74% reduction in FLOD ID compared to
AODYV in various simulation scenarios. Parameter tuning is
crucial for consistent efficiency in V2V communication, as LA-
AODV's adaptability under different traffic conditions provides
valuable insights. Our focus is on evaluating LA-AODV's
performance in realistic scenarios. While we plan to compare it
with established methods in the future, our current research
allows us to understand its effectiveness in real-world V2V
communication compared to standard AODV. We aim to
expand our scope by comparing LA-AODV with other
established methods in future studies.

Keywords: V2V communication, Learning automata, AODV
routing protocol, NS3, VANET.

1. INTRODUCTION

Vehicular Ad Hoc Networks (VANETS) revolutionize
vehicle communication, using self-organizing networks that
rely on vehicle cooperation [1]. AODV is a widely used
routing protocol in VANETS [2]. but it faces limitations like
suboptimal relay node selection [3], high control message
overhead [4], and challenges in adapting to dynamic mobility
patterns [5]. AODV generates high control overhead due to
frequent RREQ and RREP messages, leading to increased
latency and energy consumption, as well as challenges with
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scalability and handling link failures. LA-AODV, while
improving Quality of Service (QoS), introduces algorithmic
complexity and depends on precise parameter tuning,
resulting in longer convergence times in dynamic scenarios
and less compatibility with hybrid networks [6][7]. The
protocol also produces many control messages, which
increase overhead and can cause network congestion and
slower performance [8][9]. Adapting to dynamic mobility
patterns further affects AODV's efficiency in varying
vehicular conditions [10]. Efficient protocols that adapt to
mobility patterns and select relay nodes with minimal control
messages can improve VANET performance [11]. In recent
years, many researchers are exploring new routing protocols
to enhance performance and reliability in VANETs.

Researchers have developed the Learning Automata-based
Ad Hoc On-Demand Distance Vector (LA-AODYV) protocol
[12] to address these challenges. LA-AODYV optimizes relay
node selection, reduces control message overhead, and adapts
to changing network conditions using Learning Automata. It
enhances real-time responsiveness in bandwidth-limited
scenarios [13] and is highly adaptable to dynamic vehicle
mobility patterns, ensuring efficient communication [14].
Additionally, LA-AODV improves connectivity during
network partitioning, scalability in dense traffic, and mitigates
congestion. The protocol supports diverse QoS metrics [15],
providing low latency, high throughput, and reliable packet
delivery in V2V communication[16].

The study aims to optimize LA-AODV by comparing
three variants with the standard AODYV protocol to identify the
most effective one. It will focus on tuning LA-AODV
parameters to enhance QoS in V2V communication within
VANETs and evaluate its adaptability to varying traffic
conditions. The findings will provide valuable insights for
optimizing parameters, selecting the best variant, and
improving LA-AODV’s performance in real-world traffic,
advancing efficient and reliable V2V communication.

Over the years, numerous studies have focused on
identifying and addressing the challenges of the AODV



routing protocol in V2V communication, particularly
concerning QoS and channel availability [17], [18].

Researchers have proposed several methods to improve
AODV performance. For instance, implementing Prediction
Node Trends on AODV can predict a packet's destination and
reduce hop count [3], The Mobility and Detection AODV
(MDA-AODV) adjusts routing paths based on node mobility
[19], Additionally, Flooding-awareness-AODV  [20]
efficiently manages the broadcast storm problem, enhancing
packet delivery ratio and reducing average delay compared to
standard AODV.

Researchers have also explored various strategies, such as
a Cluster-based communication approach with learning
automata-assisted prediction [21] and the use of learning
automata for channel reservation [22] to ensure optimal
channel availability for V2V communication in VANET.
These approaches address handoff calls within the VANET
environment. Additionally, multipath routing strategies,
including Particle Swarm Optimization [23], leap-frog
algorithm [24], and adaptive prediction models [25].
incorporate reinforcement learning [26] to provide reliable
and efficient routing paths for V2V communications [27].

This research, while acknowledging that some studies may
not directly target VANET or network scenarios, outlines
strategies to enhance the AODV routing protocol and improve
V2V communications by optimizing the LA-AODV protocol,
identifying key factors for optimal QoS, determining the most
effective LA-AODYV variant for specific needs, and assessing
the protocol's adaptability to wvarious traffic conditions,
ultimately leading to safer and more efficient vehicular
networks.

II. RESEARCH METHODS

The process of simulating the V2V communication protocol
comprises several phases. Initially, configuration settings are
modified to define the traffic map, followed by the
establishment of mobility scenarios to observe how vehicles
move within the simulated traffic environment. The specific
steps of simulation and comparison are detailed in Figure 1.
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Fig. 1. Research Procedure for the Comparison between LA-AODV and
AODYV Through SUMO and NS3 Simulation

In Figure 1, once the mobility scenarios are set up, AODV
and LA-AODV simulations are conducted across all
scenarios for up to 200 seconds. The simulations generate
continuous data to evaluate various LA-AODV protocol
performances compared to standard AODV-supporting V2V
communication in dynamic traffic environments. The
collected data includes PDR, throughput, average end-to-end
delay, end-to-end jitter, and packet loss ratio for each
scenario and iteration. After completing the simulation, the

results are carefully analyzed in Figure 1. The purpose is to
evaluate how the LA-AODYV protocol enhances the QoS of
V2V communication in dynamic traffic situations. In the final
stage, the simulation results are thoroughly examined and
interpreted. The findings' strengths, weaknesses, and
implications on the QoS for V2V communication are
discussed. This simulation provides a deeper understanding
of the compared routing protocols (AODV and various LA-
AODV with parameter tune) that support V2V
communication in dynamic traffic environments. In order to
conduct a helpful comparison between AODV and LA-
AODYV, it is essential to implement the Learning Automata
method into AODV, which will result in the creation of LA-
AODYV, allowing for a more comprehensive evaluation of the
two protocols.

The comparison requires a modified version of the
standard AODV protocol known as LA-AODV. The
network's source node detects the locations of its neighbors
and utilizes GPS services to determine the destination node's
location using A-GPS[28]. A-GPS enhances performance in
urban areas or environments with poor satellite visibility by
utilizing cellular networks to improve the speed and accuracy
of location data. Each vehicle independently predicts its
future location using computational capabilities and
broadcasts this prediction to neighboring nodes. This ensures
that every node in the network periodically receives updates
on actual vehicle locations, a critical step in determining each
node's potential as a relay. The LA-AODV protocol ensures
accurate estimation of vehicle parts and routing decision-
making that leverages information within the wvehicle
communication network. This is achieved by predicting the
relative positions of vehicles and determining their actual
positions using speed and acceleration parameters, as
outlined in Equation (1).

INITpos = ¥ =) actualy,s , actualy,s v (1)

The LA-AODV protocol accurately routes and positions
vehicles in a communication network achieved through
Equation (1), which considers various parameters, including
the initial x and y positions of vehicle ¢ (INIT {pos) c¢), to
determine vehicle proximity. The LA-AODV protocol uses
different variables such as vehicle speed (vi), the number of
vehicles within transmission range (), and a specific node or
vehicle as a reference (c¢). Two equations are employed to
evaluate vehicle proximity and predict future positions within
the communication network by integrating these factors.

These equations aim to improve road safety by
considering vehicle speed, the number of vehicles in
transmission range, and elapsed time for informed routing
decisions. They align with the principles outlined in
Equations 2 and 3.

INITpos = EIN,SM (actual |, +(.)+ //; (Av))*Z/ 2)
INITposy= EIN,SM (actualpm‘Jr(v,.l)Jr //; (Av))*Z/ 3)
Where :

Avx=(v_t-v_t-1) at the begginning of iteration vt-
1=0,
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Avy=(v_t-v_t-1) at the begginning of iteration v_t-
1=0
And :
t  :Prediction time, where t=1,2, and t <M,
M : Maximum Iteration and K, Vehicle k,
N : Total number of vehicles within the range,
v_t :Vehicle speed at time t.

Equation 2 predicts a vehicle's x-axis position at time (t)
based on speed, distance, and time, while Equation 3 predicts
the y-axis position considering additional factors. Both
equations are crucial for accurate inter-vehicle
communication and routing decisions. The LA-AODV
protocol predicts the positions of vehicles and improves the
efficiency of communication in the vehicle network. The
vehicles exchange data with each other to determine their
minimum predicted positions. This data is then used to update
the routing table and determine the status of vehicles with
minimum distance and speed using Equation 4.

pred_accxy= \/(|Apred _posx—ApredposyD @)
Where:

Apred_pos = (pred_pos,_, -pred_pos ) 5)

Apred _pos,= (pred _pos,, ,-pred _pos}) (6)

Equation 4 computes the prediction of the vehicle's
position (pred_acc,,), taking into account changes along the
x and y axes. This calculation method utilizes the values of
Apred_pos, and Apred_pos,, obtained from Equation (5)
and Equation (6). In Equation (4), the change in the predicted
position along the x-axis is actively determined by
subtracting the expected position at time t+1 (pred_pos,,1)
from the actual predicted position of the vehicle at time (t)
( pred_pos, ). Similarly, Equation (4) calculates the
movement along the y-axis, where the predicted position
along the y-axis is based on subtracting pred_posy,,; from
pred_pos,, as described in Equation (6). The variable
pred_acc,, predicts the positions of surrounding vehicles
during a specific simulation time period, considering the
expected x and y coordinates at two points.

Equation 7 uses the Euclidean Distance formula to
determine the minimum value, comparing the optimal
movement changes of vehicles along the x and y axes for each
vehicle during two prediction time intervals.

)
)2

( |predp0sx . ]—predpm)r

O]

k<N,t<M
predaccxy = MIN k=1,t=1

( | predposy . J—predpmy

Equation 7 predicts and compares vehicle positions for
optimal routing using dynamic coordinates and Euclidean
distance. The most efficient routing conditions ensure inter-
vehicle communication responsiveness. The communication
stability index between nodes & and j is calculated using
Equation 8 to select the relay node.

. . _ predaccxy -
comm_stablhty_lndexkj— |( Mt )| ®)
Where :
7. . _ stable, if <1 )}
comm_stablllty_mdexkj {(—unstable, Sy )

Equation 8 in the LA-AODV protocol introduces the
communication stability index comm_stability_index,; .
This metric is crucial in assessing the communication
stability between nodes, specifically nodes k and j. To
calculate this index, the total predicted positions from
neighbor vehicles (represented by pred,... _) , are divided

by the maximum communication radius. ( Max,,;), This
encompasses an area of 50 grids in width and length, set at

2500 grid units. When the value comm_stabilily_indexkj, <1

indicating that the communication environment between
nodes "k" and "j" is stable. Conversely, if the index value is
greater than 1, it suggests that the communication conditions
tend to be unstable. After evaluating the communication
quality between node "k" and its neighboring vehicles, based
on the distance between them during two prediction time
intervals 't' and 't+1', the next step is to assign weights to each
vehicle. Weights for each vehicle are calculated based on
factors like speed, acceleration, position, and node 'k’
communication quality (Equation. 9). This helps make
optimal decisions about relay node selection.

((fs*(lsn_sdl))+0;*(lan_adl) > 9
+0:1*(|d,,—dd|)+(fq*(commiqualilyk) ®)

CCyy

TWR= % 19" (

Where 0.6 > TWR = 1, Optimal, and TWR <

0.59, suboptimal.

The LA-AODYV protocol utilizes Equation 9 to compute
the Total Weight Route (TWR), a parameter used to assess
the quality of the standard route. TWR takes into account
several variables, such as speed, distance, acceleration, and
communication quality, each assigned a weight equivalent to
1, as per the formulation described in Equation (10).

VI/'totaI:./i;+]:,+](d+]:]:] (10)
Equation 10 amalgamates various factors by assigning
specific weights to each parameter, creating a balanced
evaluation of all these parameters. The LA-AODV protocol
employs this mechanism to ensure that speed, distance,
acceleration, and communication quality are all optimally
taken into account when selecting the best route. This
approach results in an effective routing mechanism for
vehicle communication. The TWR provides a comprehensive
assessment of the overall route quality. After deciding on the
LA method, it applies the LRI algorithm as the learning rate
(). The source node then informs its neighbors that it is the
relay node. The LRI algorithm rewards or penalizes each
decision, as outlined in Equation (11).
A= { Q(t)r aselected:]’ reward } (11)
0@, +1,aignore =0, punishment
In Equation 11, the LRI algorithm adapts its learning by
assessing (o) based on past experiences. Rewards set the
learning rate to 1, while penalties reduce it to 0. The fine-tune
variable value of the algorithm's learning rate is related to its
decision-making ability. Equation (12) elucidates the
addition of the 'a' value to the latest TWR in the predicted
iteration (t+1).

TWR piare= % 1= 5 M (TWR+a) (12)
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Equation 12 updates the TWR value, allowing continuous
adjustment and refinement for various vehicles or modes
using the learning rate a. The TWR value adapts to changes
in network conditions and routing decisions, resulting in
dynamic and responsive routing decisions during the
simulation. This process contributes to improving the
performance of inter-vehicle communication and routing.
The value of a plays a crucial role in shaping the TWR value
and routing decisions throughout the maximum simulation
M).

A. The Simulation Environment

We evaluated our V2V communication model using
SUMO-GUI and NS3 v3.35. SUMO-GUI generated a traffic
system with various scenarios to test the communication
system in complex environments, while NS3 v3.35 simulated
network communication in conjunction with SUMO. These
tools enabled a comprehensive evaluation of our
communication model, enhancing efficiency and safety in
road transportation.

B. Simulation Setup

In this simulation, the authors evaluated various traffic
scenarios across different time intervals. These scenarios
involved network instability, data density, and
communication delays. Table 1 presents the simulation
parameter configurations utilized in this research.

TABLE. 1. COMMUNICATION SIMULATION PARAMETER

SETUP

No | Parameter Value(s)
1 Total number of Nodes 20, 30, and 40 Nodes
2 Simulation time (s) 50, 100, and 200 Second
3 Route Selection Random route selection
4 Type of Protocol AODV dan LA-AODV

Passenger cars only,
> Type of traffic Left-hand drive.

Table 1 outlines real-world vehicle scenarios using
various parameters. Performance evaluation was done with
different simulation time intervals and node counts. The
authors ran three traffic scenario simulations to assess the
LA-AODV protocol's performance in V2V communication.
They used parameter tuning to enhance QoS and protocol
effectiveness. Performance was measured using Flow ID,
PLR, PDR, Average Throughput, End-to-end Delay, and
End-to-end Jitter.

TABLE. 2. V2V SIMULATION LA-AODV PARAMETER
TUNNING

Parameter Tunning

Variables LA- LA-AODV | LA-AODV
AODV(A) (B) ©)
Js 0.3 0.4 0.3
Ja 0.3 0.4 0.4
s 0.4 0.2 0.3
TWRmax 20 30 10
TWRmin 10 15 5
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Parameter Tunning

Variables e LA-AODV | LA-AODV
AODV(A) (B) (©)
Imax 15 20 10
Imin 5 7.5 2.5
alpha 0.6 0.8 0.4
reward 1 1 1
Selected _node 5 5 5

Table 2 shows that communication efficiency from each
vehicle is influenced by factors including speed factor (fs),
acceleration factor (fa), distance factor (fd), total weighted
ratio maximum (TWRmax), total weighted ratio minimum
(TWRmin), maximum intensity (Imax), minimum intensity
(Imin), Alpha, reward, and selected node. Alpha, the
learning rate, and the reward, a value of (1) for favorable
decisions, are two key elements in the communication
system. They play a crucial role in the system's learning and
decision-making processes.

C. Quality of Services Performances Matrix

The study compares various LA-AODV routing models
with AODV, using important Quality of Service (QoS)
metrics such as FLOD ID, Packet Delivery Ratio (PDR),
Packet Loss Ratio (PLR), Average Throughput, End-to-End
Delay, and End-to-End Jitter for assessing the performance
and capabilities of LA-AODV in meeting QoS standards for
V2V communication.

III. RESULT AND DISCUSSION

Simulation metric analysis will provide insights into the
extent of LA-AODV's superiority over AODV in network
performance. These metrics will encompass the following
performance parameters. The comparative results for Flod ID
are illustrated in Figure 2.

Flood ID
942.00
1000.00
876.33 606.67
329,00 404.00
500.00
688.33 i
230.67 . 263:67
0.00 225.67 246.33 178.67
AODV LA-AODV(A)  LA-AODV (B)  LA‘AODV ()
50 TIMES 100 TIMES 200 TIMES

Fig. 2. Comparison of Flod ID routing protocols LA-AODV and AODV

The results showed in Fig. 3 that LA-AODV(B)
performed better than the other two protocols in terms of
FLOD ID, with an increase of approximately 9.14% in the
50-trial scenario, a significant increase of approximately
40.29% in the 100-trial scenario, and an increase of around
22.79% in the 200-trial scenario, compared to LA-
AODV(A).

However, LA-AODV/(C) consistently performed worse
than the other two protocols, with a decrease of around
20.85% in the 50-trial scenario, an increase of about 14.31%
in the 100-trial scenario, and a significant increase of about
84.80% in the 200-trial scenario. The comparison between
LA-AODV(C) and LA-AODV(B) showed a decrease of



about 27.54% in the 50-trial scenario and a decrease of about
50.16% in the 200-trial scenario. LA-AODV(C) performed
better than AODV in the 50-trial scenario, with a 74%
reduction in FLOD ID. However, in the 100-trial scenario,
LA-AODV(B) showed a 65% increase in FLOD ID
compared to AODV. In the 200-trial scenario, LA-AODV(A)
and LA-AODV(B) both had a decrease in FLOD ID, while
LA-AODV(C) had a slight increase. LA-AODYV has a higher
Packet Loss Ratio (PLR) than AODV in some testing
situations. See Figure 3 for comparative PLR data.

PACKET LOSS RATIO

80%
60%
40%
20%

0%

56% 57%

51%
2

W
2 46% 49% 45%

26%

AODV LA-AODV(A) LA-AODV (B) LA-AODV (C)

=@ 50 TIMES =~ e==@== 100 TIMES 200 TIMES

Fig. 3 Comparison of Packet Loss Ratio routing protocols LA-AODV and
AODV

The analysis of PLR in Fig. 3 shows that different
scenarios (50, 100, and 200 times) have shown significant
variations in the performance of LA-AODV protocols
compared to AODV. In scenario 50, LA-AODV(B) had the
highest increase of 88.46%, while LA-AODV(A) and LA-
AODV(C) saw increases of 76.92% and 73.08%,
respectively. Different LA-AODYV variants have significantly
different values for various parameters. In scenario 100, LA-
AODV(B) had a higher Packet Loss Rate (PLR), and the
Imax and Imin parameters were significant. In scenario 200,
LA-AODV(B) continued to perform worse than AODV, and
LA-AODV(C) increased TWRmin. Proper parameter tuning
is essential for improving the protocol's performance. The
AODV protocol may be more efficient in packet delivery,
while some LA-AODV variants may face challenges in
specific scenarios. Comparative results for Packet Delivery
Ratio are illustrated in Figure 4.

Packet delivery ratio

73%

P

100% 63%

50% 54%

50% 50%
48%

LA-AODV (C)

72%
43%
LA-AODV(A)

42%
LA-AODV (B)

0%
AODV

=== 50 TIMES ~ ==@==100 TIMES 200 TIMES

Fig. 4 Comparison of Packet Delivery Ratio routing protocols LA-AODV
and AODV

The analysis result in Fig.5 revealed significant
performance variations between protocols in scenarios 50,
100, and 200. LA-AODV(B) had lower PDR than AODV,
highlighting the complexity of selecting tuning parameters for
LA-AODV and its impact on handling traffic variations.
Lower PDR can lead to unreliable V2V communication,
especially in fluctuating traffic.

Comparative results for Average Throughput are depicted

in Figure 5.
Average Throughput (Kbps)

600.000 1.094

400.000 338 58251 s.cas 39.890

200.000 E
81

0.000
HEWP IANAN(A)  LAd0Ts(B)  LARDERA(C)
=@ 50 TIMES e 100 TIMES 200 TIMES

Fig. 5. Comparison of Average Throughput (Kbps) routing protocols LA-
AODV and AODV

Fig.5 show compares the Average Throughput (Kbps) in
three scenarios for AODV and its variants (LA-AODV(A),
LA-AODV(B), and LA-AODV(C)). In the 50-scenario, LA-
AODV(A) had the highest throughput at 77.247 Kbps,
followed by AODV (70.980 Kbps). In scenario 100, LA-
AODV(A) maintained its lead with an average throughput of
67.666 Kbps, while AODV outperformed all variants with
333.160 Kbps. In scenario 200, AODV had the highest
throughput at 1.094 Kbps, surpassing all LA-AODYV variants.
AODV exhibits very high End-to-End Delay in some
scenarios. Comparative results for End-to-End Delay are
depicted in Figure 6.

d to End Delayg
5.128E+11 .604E+11 22E+11 2.462E+11
100%
3.706E+16
% S—
1.0 2421F+11
. 3.096E+16 6.99%ET
0% 7.273E+10 8.467E+10 1.341F+11
AODV LA-AODV(A)  LA-AODV (B)  LA-AODV (C)
=@ 50 TIMES ~ ===@= 100 TIMES 200 TIMES

Fig. 6. Comparison of End-to-End Delay(ns) routing protocols LA-AODV
and AODV

In Figure 6, during the 50-time scenario, LA-AODV(A)
demonstrated the lowest end-to-end delay, outperforming
AODV and other LA-AODV variants. Critical parameters
such as TWRmax and TWRmin significantly influenced
protocol performance. In the 100-time scenario, LA-
AODV(A) maintained superiority, while AODV
outperformed all LA-AODV variants with the lowest delay.
In the 200-time scenario, all LA-AODV variants showed
reduced delay compared to AODV. Parameter optimization
is crucial for consistent LA-AODV performance across
traffic scenarios. Low jitter delay can support reliability and
consistency in communication networks. Comparative results
for End-to-End Jitter Delay are depicted in Figure 7.

End to End Jitter delay (ns)

4.177E+11 5.514E+10 5.184E+10

2'641E+16\/F_ﬁ
2.022E+11
1.931E+16 . 5.581E+10

1.264E+11
100%

50%

0%

2.301E+10
AODV LAAAODV(A)  LA-AODV (B)  LR-RUOBYAR)
@ 50 TIMES @ 100 TIMES 200 TIMES

Fig. 7. Comparison of End to End Jitter Delay(ns) routing protocols LA-
AODV and AODV.
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The End-to-End Jitter Delay (ns) in Figure 7 was analyzed
for scenarios of 50, 100, and 200 times. LA-AODV(A) had
the lowest Jitter Delay at 2.301E+10 ns in the 50-time
scenario. In the 100-time scenario, LA-AODV(A) continued
to lead with 2.723E+10 ns, while LA-AODV(B) and LA-
AODV(C) showed significant variations. In the 200-time
scenario, LA-AODV(A) again demonstrated the lowest Jitter
Delay. LA-AODV variants outperformed AODV despite its
high Jitter Delay.

IV. CONCLUSION

Our study compared LA-AODV variants (A, B, and C)
with the standard AODV protocol in V2V communication,
highlighting the crucial role of parameter tuning in enhancing
QoS. Notably, LA-AODV(B) exhibited superior
performance with a remarkable 40.29% improvement in the
100-trial ~ scenario, while LA-AODV(C) consistently
demonstrated suboptimal results. Through precise parameter
tuning, LA-AODV/(C) achieved a substantial 74% reduction
in FLOD ID. The research aims to comprehensively assess
the performance of LA-AODV in specific, realistic scenarios,
with the future goal of comparing it with alternative methods.
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