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Abstract — This study was conducted to explore and find the 

optimum parameters related to the Quality of Service (QoS) in 

Vehicle-to-Vehicle (V2V) communication within Vehicular Ad 

Hoc Networks (VANETs) by optimizing the Learning 

Automata-based Ad Hoc On-Demand Distance Vector protocol 

(LA-AODV). The study compared three variants of LA-AODV 

(LA-AODV(A), LA-AODV(B), and LA-AODV(C)) with the 

standard AODV. The simulation result evaluated their 

performance based on crucial QoS metrics such as FLOD ID, 

Packet Loss Ratio (PLR), Packet Delivery Ratio (PDR), Average 

Throughput, End-to-End Delay, and End-to-End Jitter. The 

results indicated that LA-AODV(B) consistently outperformed 

the other variants, particularly in FLOD ID. The improvements 

of 9.14%, 40.29%, and 22.79% in 50, 100, and 200-trial 

scenarios compared to LA-AODV(A) were significant. 

However, LA-AODV(C) showed suboptimal performance in the 

exact scenarios. Nevertheless, practical parameter tuning of LA-

AODV(C) led to a remarkable improvement in protocol 

performance, with a 74% reduction in FLOD ID compared to 

AODV in various simulation scenarios. Parameter tuning is 

crucial for consistent efficiency in V2V communication, as LA-

AODV's adaptability under different traffic conditions provides 

valuable insights. Our focus is on evaluating LA-AODV's 

performance in realistic scenarios. While we plan to compare it 

with established methods in the future, our current research 

allows us to understand its effectiveness in real-world V2V 

communication compared to standard AODV. We aim to 

expand our scope by comparing LA-AODV with other 

established methods in future studies. 

Keywords:  V2V communication, Learning automata, AODV 

routing protocol, NS3, VANET. 

I. INTRODUCTION 

Vehicular Ad Hoc Networks (VANETs) revolutionize 
vehicle communication, using self-organizing networks that 
rely on vehicle cooperation [1]. AODV is a widely used 
routing protocol in VANETs [2]. but it faces limitations like 
suboptimal relay node selection [3], high control message 
overhead [4], and challenges in adapting to dynamic mobility 
patterns [5]. AODV generates high control overhead due to 
frequent RREQ and RREP messages, leading to increased 
latency and energy consumption, as well as challenges with 

scalability and handling link failures. LA-AODV, while 
improving Quality of Service (QoS), introduces algorithmic 
complexity and depends on precise parameter tuning, 
resulting in longer convergence times in dynamic scenarios 
and less compatibility with hybrid networks [6][7]. The 
protocol also produces many control messages, which 
increase overhead and can cause network congestion and 
slower performance [8][9]. Adapting to dynamic mobility 
patterns further affects AODV's efficiency in varying 
vehicular conditions [10]. Efficient protocols that adapt to 
mobility patterns and select relay nodes with minimal control 
messages can improve VANET performance [11]. In recent 
years, many researchers are exploring new routing protocols 
to enhance performance and reliability in VANETs. 

Researchers have developed the Learning Automata-based 
Ad Hoc On-Demand Distance Vector (LA-AODV) protocol 
[12] to address these challenges. LA-AODV optimizes relay 
node selection, reduces control message overhead, and adapts 
to changing network conditions using Learning Automata. It 
enhances real-time responsiveness in bandwidth-limited 
scenarios [13] and is highly adaptable to dynamic vehicle 
mobility patterns, ensuring efficient communication [14]. 
Additionally, LA-AODV improves connectivity during 
network partitioning, scalability in dense traffic, and mitigates 
congestion. The protocol supports diverse QoS metrics [15], 
providing low latency, high throughput, and reliable packet 
delivery in V2V communication[16]. 

The study aims to optimize LA-AODV by comparing 
three variants with the standard AODV protocol to identify the 
most effective one. It will focus on tuning LA-AODV 
parameters to enhance QoS in V2V communication within 
VANETs and evaluate its adaptability to varying traffic 
conditions. The findings will provide valuable insights for 
optimizing parameters, selecting the best variant, and 
improving LA-AODV’s performance in real-world traffic, 
advancing efficient and reliable V2V communication. 

Over the years, numerous studies have focused on 
identifying and addressing the challenges of the AODV 
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routing protocol in V2V communication, particularly 
concerning QoS and channel availability [17], [18]. 

Researchers have proposed several methods to improve 
AODV performance. For instance, implementing Prediction 
Node Trends on AODV can predict a packet's destination and 
reduce hop count [3], The Mobility and Detection AODV 
(MDA-AODV) adjusts routing paths based on node mobility 
[19], Additionally, Flooding-awareness-AODV [20] 
efficiently manages the broadcast storm problem, enhancing 
packet delivery ratio and reducing average delay compared to 
standard AODV. 

Researchers have also explored various strategies, such as 
a Cluster-based communication approach with learning 
automata-assisted prediction [21] and the use of learning 
automata for channel reservation [22] to ensure optimal 
channel availability for V2V communication in VANET. 
These approaches address handoff calls within the VANET 
environment. Additionally, multipath routing strategies, 
including Particle Swarm Optimization [23], leap-frog 
algorithm [24], and adaptive prediction models [25]. 
incorporate reinforcement learning [26]  to provide reliable 
and efficient routing paths for V2V communications [27]. 

This research, while acknowledging that some studies may 
not directly target VANET or network scenarios, outlines 
strategies to enhance the AODV routing protocol and improve 
V2V communications by optimizing the LA-AODV protocol, 
identifying key factors for optimal QoS, determining the most 
effective LA-AODV variant for specific needs, and assessing 
the protocol's adaptability to various traffic conditions, 
ultimately leading to safer and more efficient vehicular 
networks. 

II. RESEARCH METHODS 

The process of simulating the V2V communication protocol 

comprises several phases. Initially, configuration settings are 

modified to define the traffic map, followed by the 

establishment of mobility scenarios to observe how vehicles 

move within the simulated traffic environment. The specific 

steps of simulation and comparison are detailed in Figure 1. 
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Fig.  1. Research Procedure for the Comparison between LA-AODV and 

AODV Through SUMO and NS3 Simulation 

In Figure 1, once the mobility scenarios are set up, AODV 

and LA-AODV simulations are conducted across all 

scenarios for up to 200 seconds. The simulations generate 

continuous data to evaluate various LA-AODV  protocol 

performances compared to standard AODV-supporting V2V 

communication in dynamic traffic environments. The 

collected data includes PDR, throughput, average end-to-end 

delay, end-to-end jitter, and packet loss ratio for each 

scenario and iteration. After completing the simulation, the 

results are carefully analyzed in Figure 1. The purpose is to 

evaluate how the LA-AODV protocol enhances the QoS of 

V2V communication in dynamic traffic situations. In the final 

stage, the simulation results are thoroughly examined and 

interpreted. The findings' strengths, weaknesses, and 

implications on the QoS for V2V communication are 

discussed. This simulation provides a deeper understanding 

of the compared routing protocols (AODV and various LA-

AODV with parameter tune) that support V2V 

communication in dynamic traffic environments. In order to 

conduct a helpful comparison between AODV and LA-

AODV, it is essential to implement the Learning Automata 

method into AODV, which will result in the creation of LA-

AODV, allowing for a more comprehensive evaluation of the 

two protocols.  

 The comparison requires a modified version of the 

standard AODV protocol known as LA-AODV. The 

network's source node detects the locations of its neighbors 

and utilizes GPS services to determine the destination node's 

location using A-GPS[28].  A-GPS enhances performance in 

urban areas or environments with poor satellite visibility by 

utilizing cellular networks to improve the speed and accuracy 

of location data. Each vehicle independently predicts its 

future location using computational capabilities and 

broadcasts this prediction to neighboring nodes. This ensures 

that every node in the network periodically receives updates 

on actual vehicle locations, a critical step in determining each 

node's potential as a relay. The LA-AODV protocol ensures 

accurate estimation of vehicle parts and routing decision-

making that leverages information within the vehicle 

communication network. This is achieved by predicting the 

relative positions of vehicles and determining their actual 

positions using speed and acceleration parameters, as 

outlined in Equation (1). 

INITposc= ∑  k=1
k≤N actualposx

, actualposy
,v (1) 

 The LA-AODV protocol accurately routes and positions 

vehicles in a communication network achieved through 

Equation (1), which considers various parameters, including 

the initial x and y positions of vehicle c (INIT〖pos〗_c), to 

determine vehicle proximity. The LA-AODV protocol uses 

different variables such as vehicle speed (vi), the number of 

vehicles within transmission range (N), and a specific node or 

vehicle as a reference (c). Two equations are employed to 

evaluate vehicle proximity and predict future positions within 

the communication network by integrating these factors.  

These equations aim to improve road safety by 

considering vehicle speed, the number of vehicles in 

transmission range, and elapsed time for informed routing 

decisions. They align with the principles outlined in 

Equations 2 and 3. 

 

INITposx= ∑  k=1,t=1
k ≤ N,t ≤ M (actualposx

+(vt.t)+ ((1
2

(Δv)) *2)    (2) 

INITposy= ∑  k=1,t=1
k ≤ N,t ≤ M (actualposy

+(vt.t)+ ((1
2

(Δv)) *2)   (3) 

 

Where :  

Δvx=(v_t-v_t-1) at the begginning of iteration   vt-

1=0, 
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Δvy=(v_t-v_t-1) at the begginning of iteration v_t-

1=0 

And : 

 t  : Prediction time, where t = 1,2, and t < M, 

M : Maximum Iteration and K,  Vehicle k, 

N : Total number of vehicles within the range, 

v_t    : Vehicle speed at time t. 

 Equation 2 predicts a vehicle's x-axis position at time (t) 

based on speed, distance, and time, while Equation 3 predicts 

the y-axis position considering additional factors. Both 

equations are crucial for accurate inter-vehicle 

communication and routing decisions. The LA-AODV 

protocol predicts the positions of vehicles and improves the 

efficiency of communication in the vehicle network. The 

vehicles exchange data with each other to determine their 

minimum predicted positions. This data is then used to update 

the routing table and determine the status of vehicles with 

minimum distance and speed using Equation 4. 

pred_accxy= √(|∆pred_posx-∆predposy
|)           (4) 

Where: 

    ∆pred_posx= (pred_posx+1-pred_posx)           (5) 

    ∆pred_posy= (pred_posy+1-pred_posy)          (6) 

 

Equation 4 computes the prediction of the vehicle's 

position (𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦), taking into account changes along the 

x and y axes. This calculation method utilizes the values of ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥  and ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦 , obtained from Equation (5) 

and Equation (6). In Equation (4), the change in the predicted 

position along the x-axis is actively determined by 

subtracting the expected position at time t+1 (𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥+1) 

from the actual predicted position of the vehicle at time (t) 

( 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥 ). Similarly, Equation (4) calculates the 

movement along the y-axis, where the predicted position 

along the y-axis is based on subtracting 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦+1   from 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥 ,  as described in Equation (6). The variable 𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦  predicts the positions of surrounding vehicles 

during a specific simulation time period, considering the 

expected x and y coordinates at two points. 

 Equation 7 uses the Euclidean Distance formula to 

determine the minimum value, comparing the optimal 

movement changes of vehicles along the x and y axes for each 

vehicle during two prediction time intervals. 

predaccxy  = MIN ( k=1,t=1
k≤N,t≤M√( |predposx+1-predposx

| )2-

( |predposy+1-predposy
| )2  )  (7) 

 

 Equation 7 predicts and compares vehicle positions for 

optimal routing using dynamic coordinates and Euclidean 

distance. The most efficient routing conditions ensure inter-

vehicle communication responsiveness. The communication 

stability index between nodes k and j is calculated using 

Equation 8 to select the relay node. 

comm_stability_indexkj= |(predaccxy  =

Maxrad
)|           (8) 

Where :  

comm_stability_indexkj= {( stable, if ≤ 1
unstable, if > 1)}    (9) 

 

 Equation 8 in the LA-AODV protocol introduces the 

communication stability index 𝑐𝑜𝑚𝑚_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥𝑘𝑗  . 

This metric is crucial in assessing the communication 

stability between nodes, specifically nodes k and j. To 

calculate this index, the total predicted positions from  

neighbor vehicles (represented by predaccxy  =) , are divided 

by the maximum communication radius. ( Maxrad ), This 

encompasses an area of 50 grids in width and length, set at 

2500 grid units. When the value comm_stability_indexkj, ≤1  
indicating that the communication environment between 

nodes "k" and "j" is stable. Conversely, if the index value is 

greater than 1, it suggests that the communication conditions 

tend to be unstable. After evaluating the communication 

quality between node "k" and its neighboring vehicles, based 

on the distance between them during two prediction time 

intervals 't' and 't+1', the next step is to assign weights to each 

vehicle. Weights for each vehicle are calculated based on 

factors like speed, acceleration, position, and node 'k' 

communication quality (Equation. 9). This helps make 

optimal decisions about relay node selection. 

TWRk= ∑  k=1
k to N ( ((fs*(|sn-sd|))+(fa*(|an-ad|)

+(fd*(|dn-dd|)+(fq*(comm_qualityk)) (9) 

Where 0.6 ≥ 𝑇𝑊𝑅 = 1, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙, 𝑎𝑛𝑑  𝑇𝑊𝑅 ≤0.59, 𝑠𝑢𝑏𝑜𝑝𝑡𝑖𝑚𝑎𝑙.      
 

 The LA-AODV protocol utilizes Equation 9 to compute 

the Total Weight Route (TWR), a parameter used to assess 

the quality of the standard route. TWR takes into account 

several variables, such as speed, distance, acceleration, and 

communication quality, each assigned a weight equivalent to 

1, as per the formulation described in Equation (10). 

Wtotal=fs+ fa+ fd+ fq=1       (10) 

 Equation 10 amalgamates various factors by assigning 

specific weights to each parameter, creating a balanced 

evaluation of all these parameters. The LA-AODV protocol 

employs this mechanism to ensure that speed, distance, 

acceleration, and communication quality are all optimally 

taken into account when selecting the best route. This 

approach results in an effective routing mechanism for 

vehicle communication. The TWR provides a comprehensive 

assessment of the overall route quality. After deciding on the 

LA method, it applies the LRI algorithm as the learning rate 

(α). The source node then informs its neighbors that it is the 
relay node. The LRI algorithm rewards or penalizes each 

decision, as outlined in Equation (11). 

     at+1= { Q(t), aselected=1, reward  
Q(t),+1,aignore=0, punishment}          (11) 

 In Equation 11, the LRI algorithm adapts its learning by 

assessing (α) based on past experiences. Rewards set the 
learning rate to 1, while penalties reduce it to 0. The fine-tune 

variable value of the algorithm's learning rate is related to its 

decision-making ability. Equation (12) elucidates the 

addition of the 'a' value to the latest TWR in the predicted 

iteration (t+1). 

        TWRupdate= ∑  k=1, t=1
k ≤  N,t ≤ M(TWRk+a)         (12) 
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 Equation 12 updates the TWR value, allowing continuous 

adjustment and refinement for various vehicles or modes 

using the learning rate α. The TWR value adapts to changes 
in network conditions and routing decisions, resulting in 

dynamic and responsive routing decisions during the 

simulation. This process contributes to improving the 

performance of inter-vehicle communication and routing. 

The value of α plays a crucial role in shaping the TWR value 
and routing decisions throughout the maximum simulation 

(M). 

A. The Simulation Environment 

 We evaluated our V2V communication model using 

SUMO-GUI and NS3 v3.35. SUMO-GUI generated a traffic 

system with various scenarios to test the communication 

system in complex environments, while NS3 v3.35 simulated 

network communication in conjunction with SUMO. These 

tools enabled a comprehensive evaluation of our 

communication model, enhancing efficiency and safety in 

road transportation. 

B. Simulation Setup 

In this simulation, the authors evaluated various traffic 

scenarios across different time intervals. These scenarios 

involved network instability, data density, and 

communication delays. Table 1 presents the simulation 

parameter configurations utilized in this research. 

 

TABLE.  1. COMMUNICATION SIMULATION PARAMETER 

SETUP 

No Parameter Value(s) 

1 Total number of Nodes 20, 30, and 40 Nodes 

2 Simulation time (s) 50, 100, and 200 Second 

3 Route Selection Random route selection 

4 Type of Protocol AODV dan LA-AODV 

5 Type of traffic 
Passenger cars only, 

Left-hand drive. 

 

 Table 1 outlines real-world vehicle scenarios using 

various parameters. Performance evaluation was done with 

different simulation time intervals and node counts. The 

authors ran three traffic scenario simulations to assess the 

LA-AODV protocol's performance in V2V communication. 

They used parameter tuning to enhance QoS and protocol 

effectiveness. Performance was measured using Flow ID, 

PLR, PDR, Average Throughput, End-to-end Delay, and 

End-to-end Jitter. 
 

TABLE.  2. V2V SIMULATION LA-AODV PARAMETER 

TUNNING 

Parameter Tunning 

Variables 
LA-

AODV(A) 

LA-AODV 

(B) 

LA-AODV 

(C) 

fs 0.3 0.4 0.3 

fa 0.3 0.4 0.4 

fd 0.4 0.2 0.3 

TWRmax 20 30 10 

TWRmin 10 15 5 

Parameter Tunning 

Variables 
LA-

AODV(A) 

LA-AODV 

(B) 

LA-AODV 

(C) 

Imax 15 20 10 

Imin 5 7.5 2.5 

alpha 0.6 0.8 0.4 

reward 1 1 1 

Selected_node 5 5 5 

 

 Table 2 shows that communication efficiency from each 

vehicle is influenced by factors including speed factor (fs), 

acceleration factor (fa), distance factor (fd), total weighted 

ratio maximum (TWRmax), total weighted ratio minimum 

(TWRmin), maximum intensity (Imax), minimum intensity 

(Imin), Alpha, reward, and selected_node. Alpha, the 

learning rate, and the reward, a value of (1) for favorable 

decisions, are two key elements in the communication 

system. They play a crucial role in the system's learning and 

decision-making processes. 

C. Quality of Services Performances Matrix 

The study compares various LA-AODV routing models 

with AODV, using important Quality of Service (QoS) 

metrics such as FLOD ID, Packet Delivery Ratio (PDR), 

Packet Loss Ratio (PLR), Average Throughput, End-to-End 

Delay, and End-to-End Jitter for assessing the performance 

and capabilities of LA-AODV in meeting QoS standards for 

V2V communication. 

III. RESULT AND DISCUSSION 

Simulation metric analysis will provide insights into the 
extent of LA-AODV's superiority over AODV in network 
performance. These metrics will encompass the following 
performance parameters. The comparative results for Flod ID 
are illustrated in Figure 2. 

Fig.  2. Comparison of Flod ID routing protocols LA-AODV and AODV 

 The results showed in Fig. 3 that LA-AODV(B) 

performed better than the other two protocols in terms of 

FLOD ID, with an increase of approximately 9.14% in the 

50-trial scenario, a significant increase of approximately 

40.29% in the 100-trial scenario, and an increase of around 

22.79% in the 200-trial scenario, compared to LA-

AODV(A).  

      However, LA-AODV(C) consistently performed worse 

than the other two protocols, with a decrease of around 

20.85% in the 50-trial scenario, an increase of about 14.31% 

in the 100-trial scenario, and a significant increase of about 

84.80% in the 200-trial scenario. The comparison between 

LA-AODV(C) and LA-AODV(B) showed a decrease of 
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about 27.54% in the 50-trial scenario and a decrease of about 

50.16% in the 200-trial scenario. LA-AODV(C) performed 

better than AODV in the 50-trial scenario, with a 74% 

reduction in FLOD ID. However, in the 100-trial scenario, 

LA-AODV(B) showed a 65% increase in FLOD ID 

compared to AODV. In the 200-trial scenario, LA-AODV(A) 

and LA-AODV(B) both had a decrease in FLOD ID, while 

LA-AODV(C) had a slight increase. LA-AODV has a higher 

Packet Loss Ratio (PLR) than AODV in some testing 

situations. See Figure 3 for comparative PLR data. 

 

 
Fig.  3 Comparison of Packet Loss Ratio routing protocols LA-AODV and 

AODV  

 The analysis of PLR in Fig. 3 shows that different 

scenarios (50, 100, and 200 times) have shown significant 

variations in the performance of LA-AODV protocols 

compared to AODV. In scenario 50, LA-AODV(B) had the 

highest increase of 88.46%, while LA-AODV(A) and LA-

AODV(C) saw increases of 76.92% and 73.08%, 

respectively. Different LA-AODV variants have significantly 

different values for various parameters. In scenario 100, LA-

AODV(B) had a higher Packet Loss Rate (PLR), and the 

Imax and Imin parameters were significant. In scenario 200, 

LA-AODV(B) continued to perform worse than AODV, and 

LA-AODV(C) increased TWRmin. Proper parameter tuning 

is essential for improving the protocol's performance. The 

AODV protocol may be more efficient in packet delivery, 

while some LA-AODV variants may face challenges in 

specific scenarios. Comparative results for Packet Delivery 

Ratio are illustrated in Figure 4.  

 

Fig.  4 Comparison of Packet Delivery Ratio routing protocols LA-AODV 

and AODV 

The analysis result in Fig.5 revealed significant 
performance variations between protocols in scenarios 50, 
100, and 200. LA-AODV(B) had lower PDR than AODV, 
highlighting the complexity of selecting tuning parameters for 
LA-AODV and its impact on handling traffic variations. 
Lower PDR can lead to unreliable V2V communication, 
especially in fluctuating traffic. 

Comparative results for Average Throughput are depicted 

in Figure 5. 

 
Fig.  5. Comparison of Average Throughput (Kbps) routing protocols LA-

AODV and AODV 

 Fig.5 show compares the Average Throughput (Kbps) in 

three scenarios for AODV and its variants (LA-AODV(A), 

LA-AODV(B), and LA-AODV(C)). In the 50-scenario, LA-

AODV(A) had the highest throughput at 77.247 Kbps, 

followed by AODV (70.980 Kbps). In scenario 100, LA-

AODV(A) maintained its lead with an average throughput of 

67.666 Kbps, while AODV outperformed all variants with 

333.160 Kbps. In scenario 200, AODV had the highest 

throughput at 1.094 Kbps, surpassing all LA-AODV variants. 

AODV exhibits very high End-to-End Delay in some 

scenarios. Comparative results for End-to-End Delay are 

depicted in Figure 6. 

 
Fig.  6. Comparison of End-to-End Delay(ns) routing protocols LA-AODV 

and AODV 

 In Figure 6, during the 50-time scenario, LA-AODV(A) 

demonstrated the lowest end-to-end delay, outperforming 

AODV and other LA-AODV variants. Critical parameters 

such as TWRmax and TWRmin significantly influenced 

protocol performance. In the 100-time scenario, LA-

AODV(A) maintained superiority, while AODV 

outperformed all LA-AODV variants with the lowest delay. 

In the 200-time scenario, all LA-AODV variants showed 

reduced delay compared to AODV. Parameter optimization 

is crucial for consistent LA-AODV performance across 

traffic scenarios. Low jitter delay can support reliability and 

consistency in communication networks. Comparative results 

for End-to-End Jitter Delay are depicted in Figure 7. 

 
Fig.  7. Comparison of End to End Jitter Delay(ns) routing protocols LA-

AODV and AODV. 
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 The End-to-End Jitter Delay (ns) in Figure 7 was analyzed 

for scenarios of 50, 100, and 200 times. LA-AODV(A) had 

the lowest Jitter Delay at 2.301E+10 ns in the 50-time 

scenario. In the 100-time scenario, LA-AODV(A) continued 

to lead with 2.723E+10 ns, while LA-AODV(B) and LA-

AODV(C) showed significant variations. In the 200-time 

scenario, LA-AODV(A) again demonstrated the lowest Jitter 

Delay. LA-AODV variants outperformed AODV despite its 

high Jitter Delay. 

IV. CONCLUSION 

 Our study compared LA-AODV variants (A, B, and C) 

with the standard AODV protocol in V2V communication, 

highlighting the crucial role of parameter tuning in enhancing 

QoS. Notably, LA-AODV(B) exhibited superior 

performance with a remarkable 40.29% improvement in the 

100-trial scenario, while LA-AODV(C) consistently 

demonstrated suboptimal results. Through precise parameter 

tuning, LA-AODV(C) achieved a substantial 74% reduction 

in FLOD ID. The research aims to comprehensively assess 

the performance of LA-AODV in specific, realistic scenarios, 

with the future goal of comparing it with alternative methods. 
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